Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Atypical expansion in mice of the sensory neuron-specific Mrg G protein-coupled receptor family.

      Proceedings of the National Academy of Sciences of the United States of America
      Animals, Evolution, Molecular, GTP-Binding Proteins, metabolism, Gene Expression, Genetic Variation, Gerbillinae, Humans, Mice, Models, Genetic, Molecular Sequence Data, Multigene Family, Nerve Tissue Proteins, genetics, Neurons, Afferent, Nociceptors, Phylogeny, Rats, Receptors, Cell Surface, Receptors, G-Protein-Coupled, Recombination, Genetic, Retroelements, Species Specificity

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Mas-related genes (Mrgs) comprise a family of >50 G protein-coupled receptors (GPCRs), many of which are expressed in specific subsets of nociceptive sensory neurons in mice. In contrast, humans contain a related but nonorthologous family of genes, called MrgXs or sensory neuron-specific receptors, of which many fewer appear to be expressed in sensory neurons. To determine whether the diversity of murine Mrgs is generic to rodents or is an atypical feature of mice, we characterized MrgA, MrgB, MrgC, and MrgD subfamilies in rat and gerbil. Surprisingly, although mice have approximately 22 MrgA and approximately 14 MrgC genes, rats and gerbils have just a single MrgA and MrgC gene. This murine-specific expansion likely reflects recent retrotransposon-mediated unequal crossover events. The expression of Mrgs in rat sensory ganglia suggests that the extensive cellular diversity in mice can be simplified to a core subset of approximately four different genes (MrgA, MrgB, MrgC, and MrgD), defining a similar number of neuronal subpopulations. Our results suggest more generally that mouse-human genomic comparisons may sometimes reveal differences atypical of rodents.

          Related collections

          Author and article information

          Comments

          Comment on this article