Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Crystal structure of the third KH domain of human poly(C)-binding protein-2 in complex with a C-rich strand of human telomeric DNA at 1.6 Å resolution

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          KH (hnRNP K homology) domains, consisting of 70 amino acid residues, are present in a variety of nucleic-acid-binding proteins. Among these are poly(C)-binding proteins (PCBPs), which are important regulators of mRNA stability and posttranscriptional regulation in general. All PCBPs contain three different KH domains and recognize poly(C)-sequences with high affinity and specificity. To reveal the molecular basis of poly(C)-sequence recognition, we have determined the crystal structure, at 1.6 Å resolution, of PCBP2 KH3 domain in complex with a 7-nt DNA sequence (5′-AACCCTA-3′) corresponding to one repeat of the C-rich strand of human telomeric DNA. The domain assumes a type-I KH fold in a βααββα configuration. The protein–DNA interface could be studied in unprecedented detail and is made up of a series of direct and water-mediated hydrogen bonds between the protein and the DNA, revealing an especially dense network involving several structural water molecules for the last 2 nt in the core recognition sequence. Unlike published KH domain structures, the protein crystallizes without protein–protein contacts, yielding new insights into the dimerization properties of different KH domains. A nucleotide platform, an interesting feature found in some RNA molecules, was identified, evidently for the first time in DNA.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          The poly(C)-binding proteins: a multiplicity of functions and a search for mechanisms.

          The poly(C) binding proteins (PCBPs) are encoded at five dispersed loci in the mouse and human genomes. These proteins, which can be divided into two groups, hnRNPs K/J and the alphaCPs (alphaCP1-4), are linked by a common evolutionary history, a shared triple KH domain configuration, and by their poly(C) binding specificity. Given these conserved characteristics it is remarkable to find a substantial diversity in PCBP functions. The roles of these proteins in mRNA stabilization, translational activation, and translational silencing suggest a complex and diverse set of post-transcriptional control pathways. Their additional putative functions in transcriptional control and as structural components of important DNA-protein complexes further support their remarkable structural and functional versatility. Clearly the identification of additional binding targets and delineation of corresponding control mechanisms and effector pathways will establish highly informative models for further exploration.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            KH domain: one motif, two folds.

            A. Grishin (2001)
            The K homology (KH) module is a widespread RNA-binding motif that has been detected by sequence similarity searches in such proteins as heterogeneous nuclear ribonucleoprotein K (hnRNP K) and ribosomal protein S3. Analysis of spatial structures of KH domains in hnRNP K and S3 reveals that they are topologically dissimilar and thus belong to different protein folds. Thus KH motif proteins provide a rare example of protein domains that share significant sequence similarity in the motif regions but possess globally distinct structures. The two distinct topologies might have arisen from an ancestral KH motif protein by N- and C-terminal extensions, or one of the existing topologies may have evolved from the other by extension, displacement and deletion. C-terminal extension (deletion) requires ss-sheet rearrangement through the insertion (removal) of a ss-strand in a manner similar to that observed in serine protease inhibitors serpins. Current analysis offers a new look on how proteins can change fold in the course of evolution.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MAB, a generally applicable molecular force field for structure modelling in medicinal chemistry.

              The mathematical formulation, parametrization scheme, and structural results of a new, generally applicable molecular force field are presented. The central features are a scheme for automatic parameter assignments, the consistent united-atom approximation, the absence of atom types other than elements, the replacement of electrostatic terms by geometrical hydrogen-bonding terms, the concomitant lack of a need for partial atomic charge assignment and the strict adherence to a finite-range design. As a consequence of omitting all hydrogen atoms, optimal hydrogen-bond patterns are computed dynamically by appropriate network analyses. For a test set of 1589 structures, selected from the Cambridge Structural Database solely on the grounds of a given element list and criteria for high structure refinement, the agreements are on average 2 pm for bonds, 2 degrees for valence angles and 10 to 20 pm for the root-mean-square deviation of atom positions, depending somewhat on size and flexibility of the structures. More qualitative testing of large-scale structural properties of the force field on proteins and DNA oligomers revealed satisfactory performance.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                Nucleic Acids Research
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                April 2007
                10 April 2007
                10 April 2007
                : 35
                : 8
                : 2651-2660
                Affiliations
                1Department of Pharmaceutical Chemistry and 2Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143-2280, USA
                Author notes
                *To whom correspondence should be addressed +1-415 476-1916+1-415-502-8298 james@ 123456picasso.ucsf.edu
                Article
                10.1093/nar/gkm139
                1885661
                17426136
                00f67e86-da4d-4bf4-a25d-7c5bcc3172c5
                © 2007 The Author(s)

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 21 November 2006
                : 21 February 2007
                : 22 February 2007
                Categories
                Structural Biology

                Genetics
                Genetics

                Comments

                Comment on this article